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An alternative super-Poincar6 algebra 
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Institute of Physics, Czechoslovak Academy of Sciences, 180 40 Prague 8, Czechoslovakia 

Received 3 September 1981, in final form 22 February 1982 

Abstract. Properties of an alternative supersymmetric extension of the Poincar6 algebra 
are investigated. Relations to other superalgebras are studied and the explicit form of 
Casimir operators is written down. Representations on a superspace as well as an analogue 
of the Wess-Zumino supersymmetric Lagrangian are found by a contraction procedure. 

1. Introduction 

In spite of the fact that the Golden Age of the classical global supersymmetry (Wess 
and Zumino 1974a, b, Salam and Strathdee 1974) is probably over, there are some 
paths which remained unnoticed. One of them is an alternative supersymmetric 
extension found by Konopelchenko in 1975 when he classified superalgebras contain- 
ing the Lie algebra of the PoincarC group (the inhomogenous Lorentz group). Beside 
the well known superalgebra GL of the classical supersymmetry (Golfand and Licht- 
man 1971, 1972) he found another superalgebra (Konopelchenko 1975) of the same 
dimension but with different (anti) commutation relations of odd generators. The 
main reason why this algebra remained unnoticed is that it does not admit Hermitian 
representation of the odd operators. This leads to serious difficulties when we try to 
construct realistic physical models invariant under this algebra and it remained out 
of the classification of the S-matrix symmetries (Haag et a1 1975). The usefulness of 
this superalgebra for physics is therefore questionable. 
On the other hand, there are interesting relations of this superalgebra to other 

algebras commonly used in physics. It lies (in the sense of contractions) between the 
superalgebra OSp( 1 , 4) and the superalgebra of standard supersymmetry, and 
moreover, the representation of the PoincarC algebra on the odd generators of 
Konopelchenko’s superalgebra is reminiscent of the twistorial representation of the 
conformal group. 

Besides, most of the forthcoming results are derived by the contraction procedure 
and we found it interesting to see how it works in the case of non-real algebra. 

Therefore, we found it reasonable, at least from the mathematical point of view, 
to investigate properties of Konopelchenko’s superalgebra and its superfdd 
representations. 

The paper is arranged as follows. In § 2 Konopelchenko’s superalgebra is defined, 
relations to standard supersymmetry, superconformal and Osp( 1 ,4)  superalgebras are 
discussed and Casimir operators are written down. In 0 3 we investigate representa- 
tions on superspaces, superfields, covariant derivatives and the analogue of the Wess- 
Zumino supersymmetric Lagrangian. 
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2. Properties of Konopelchenko’s superalgebra 

We call the superalgebra K (Konopelchenko’s) the 14-dimensional graded vector 
space whose basis forms ten even generators of the PoincarC algebra J,,, = -J,,,, P,; 
g, v = 0, 1,2, 3 with commutation relations 

where q,,, = (+---) and four odd generators QA, RA; A,  A = 1,2.  The (anti) 
commutation relations of the odd generators are 

- 
Matrices V*AB, a w Y ~ B ,   AI) are defined in the appendix as well as the rules for raising 
and lowering the indices A, A. 

In Konopelchenko’s work there is one more constant b on the right-hand side of 
the (anti) commutations relations. It may be transformed to one when redefining 
QA + b-If2 Qa, RA + b-’I2R A . (we suppose b # 0). Here, however, we keep the constant 
a in order to have at each step a correspondence with standard supersymmetry algebra 
which is obtained when a + O  (see e.g. Fayet and Ferrara 1977, Ogievetskij and 
Mezincescu 1975). When we proceed to the spin-tensor basis (HlavatP and Niederle 
1980) we can easily see that the involution of the Poincari algebra 

J E U  = JFY P: = P, (2.9) 

cannot be extended to the odd elements of the superalgebra K. 
Commutation relations between odd and even generators of a superalgebra gen- 

erally define a representation of its even part. The representation of the Poincari 
group that follows from the commutation relations (2.2)-(2.5) is identical with the 
Poincari transformations of twistors (see e.g. Penrose 1975) because odd generators 
transform like spinors under the Lorentz transformations and the translations are 
represented as 

QA -+ QA (2.10) 

(2.11) 

We can conclude that the superalgebra K is the extension of the Poincare‘ algebra by 
odd twistorid generators. This is related to the fact that the algebra K is a subalgebra 
of the superconformal algebra (see e.g. Fayet and Ferrara 1977). 

It is known that the superalgebra GL is a contraction of the simple superalgebra 
OSp(l,4). We shall show that the superalgebra K is also a contraction of OSp(l,4). 

RA + RA + iax+a,saQB. 
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The superalgebra OSp(l,4) (Zumino 1977) has 10 even and 4 odd generators. 
Their (anti) commutation relations in a special choice of y matrices and a special 
basis of OSp(l,4) are 

[JcLV, J A ~ ]  = -i(qCIAJVp - %AJ,p + % d w A  - 7 7 , , d u ~ )  (2.12) 

[JwV9 R A ]  = -i(%ARU - Vu&) (2.13) 

(2.14) [R,, R,]  = -im JSy 

[JWY, UAI = -h,vABUB, [J,,, o A 1  = -?i3uCLV~~ 1.-ojEi (2.15) 

[R,, UA] = -(C/mb)a,AjEiO’, [R,, 0.41 = -(b/mC)V,BAUB (2.16) 

{UA, UBl=ib ABJ,,, {rfa, = ic-2g’LV, AB . J,V (2.17) 

{UA, oh}= (m/bC)U@A&,. (2.18) 

If we want to contract the even part of OSp(l,4) to PoincarC algebra it is necessary 
that m + 00. It follows from (2.18) that also b + or c + 00 in order to preserve mlbc 
as finite. The superalgebra K is obtained by contraction m + 00, b + 00, m/b = c = 
a .  

The fact, that the superalgebra K is a contraction of OSp(l,4) will be widely 
exploited below. The first example is the construction of Casimir operators. 

Casimir operators of the superalgebra K may be obtained by contractions of 
OSp(l,4) Casimir operators, the derivation of which is outlined in Jarvis and Green 
(1 979). Detailed description of the Casimir operators construction is presented in 
Hlavatjl and Niederle (1980), therefore in this paper we present only the results in a 
slightly different form. There are two independent Casimir operators of the super- 
algebra K which are polynomials of the second and fourth degree in the generators. 

2 

- 
-2 LLV 

-1/2 

C2 = P2 - $aQ2 = P,P” - $aQAQA 

C4 = 8 K + &{ Q2, R ’} + a [i(* J,, )J@” + 21 Q2 

(2.19) 

It is interesting that the Casimir C2 combines the mass operator Pz with operator Q2. 

Therefore it might seem that multiplets of particles with different mass could exist 
in the framework of this alternative superalgebra. Unfortunately, as the odd elements 
of the superalgebra cannot be represented by Hermitian operators there are probably 
no particle-type representations of this superalgebra. Let us remark that the first two 
terms of C4 form the fourth-order Casimir operator of the superalgebra GL that to 
our knowledge has never been published before. 

3. Representations, superfields and K-invariant Lagrangian 

The impossibility of prolonging the involution of the PoincarC algebra into the 
superalgebra K prevents the existence of unitary representations of K with particle 
interpretation. On the other hand, we can find representations of superfields i.e. 
functions of superspace parametrised by commuting and anticommuting coordinates. 
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The simplest representation may be obtained, when the Lorentz covariant ansatz 

where a, b, . . . , j are functions of x’, is inserted into (2.4)-(2.8). It shows that in this 
case the superalgebra K is represented in derivations with respect to x” and 8A only. 
No anticommuting variables Gs, are needed. Generators are represented as 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

Operator Q A  in this representation reminds us of ‘momentum in the space of Grassman 
variables’ while RA is reminiscent of ‘an angular momentum in the superspace’ because 
it mixes commuting and anticommuting coordinates in a similar way that the usual 
angular momentum mixes coordinates xw.  

Representation (3.4)-(3.7) corresponds to the realisation of the supergroup K on 
the coset space K/S where S is superextension of the Lorentz group by RA, S cc {J,,, RA}. 
(We denote here the supergroup and its algebra by the same letter.) When we look 
for more complicated representations of the superalgebra K on the coset space 
K/0(1,3),  where O(1, 3) is the Lorentz group generated by J,,, we may again exploit 
the fact that the superalgebra K is the contraction of OSp( l ,4)  and contract representa- 
tions of OSp(l ,4)  on OSp( l ,4) /0(1 ,3)  found by Ivanov and Sorin (1980). 

4 k  (X ,, @ A ,  TA) = Ak ( X I  + B A h 4 ( X )  

The general superfield defined on K/0(1 ,3)  is 

VAX: ( X I  + $ e 2 ( F k  (X )  - i G  (X )) 

+$?7*(Fk(X) +iGk(X)) +$i8AUFABqBVkr(X) ++(e2+ q 2 ) ( 8 A p k A ( X )  

+ T A 7 j f ( X ) ) + 3 ? i ( e 2 + q 2 ) 2 0 k ( X )  (3.8) 

where the ordinary fields Ak(x) ,  . . . , D k ( X )  carry a Lorentz group representation. 
Generators of the superalgebra K in the realisation of superfields are 

J,, =i(x,a, -x,a,)+z(e a, + q A ~ , ~ ~ B a f l ) + ~ , ,  (3.9) 1 A  B 

(3.10) 

(3.11) 

(3.12) 

where MWy is a matrix representation of J,,,. 

K/0(1 ,3 )  
The representation (3.9)-(3.12) corresponds to the peculiar parametrisation of 

g = g(x”, B A ,  T A )  = exp(2ixwP,) exp[i(l - faq2)eAQA + i q ~ R A l .  (3.13) 
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We may, of course, choose any other parametrisation of the coset space. Parametrisa- 
tions 

(3.14) 

(3.15) 

will be useful for investigations of chiral components of superfields. Coordinate 
transformations induced by passage from (3.13) to (3.14) or (3.15) are 

r? 

R A  g = g(xwL, OAL, 7AR) = exp(2ixkPp) exp(ieA"QA) exp(iqAR ) 

g = g(xwR, e'"", vAL) = exp(2ixEP") exp(i6AR ) exp(ifA"QA) - R A  

=(1-$aT2)8A V A = V A  (3.16) L 1. A B x,=x,--Pe u,AriV 

and 

(3.17) 

Our final goal is finding the form of a K-invariant Lagrangian similar to the 
Wess-Zumino (1974b) Lagrangian of the standard supersymmetry. Once more we 
shall contract analogous results to Ivanov and Sorin (1980) for OSp(l,4). First of all 
we have to find irreducible components of the superfield (3.8). They may be obtained 
by virtue of covariant derivatives 

D A  = aA - b Z f i a , q  

1. A B -R -L x r  =x, +ale U ~ A B V  e A  = V A  T A  = SA. 

(3.18) 

(3.19) 

B 

2 B w ,  B DA = (i+aaV*)aa+$(i -$U? )e aBAar +a(VAeBaB - i" I 'ewuAdV 1. 

The irreducible, so-called chiral, components 4; and q5f meet conditions 

(3.20) 

D,&X~, eA, TA) = 0. (3.21) 

To solve these conditions it is convenient to rewrite the covariant derivatives in 
coordinates (xL, OL, qR), (xR, e", f L )  

A DA4;(XF,'dA, 7 ) = o  

(3.22) 

(3.23) 

Solutions of (3.20), (3.21) are 

(3.24) 

(3.25) 

a -An 1-2 R 

AL L 1 L2 L 

4; = +F(xR, e") =Af(xR)+OAl(/k (xR)+28 Fk (xR) 

4; =4;(xL, 13~)=Ak(x~)+f3 l(/ka(xL)+ZO Fk (x") 

where, however, the left fields Ak, &, Fk are not arbitrary but fulfil conditions 

a"A&((M,V)k'X,L(XL) = 0 X=A,l(/,F. (3.26) 

It means that the fields transform in index k under the representation D(q, 0) of the 
Lorentz group (see e.g. Schweber 1961). 

The form of the K-invariant Lagrangian is derived from the superfield action 

+:Jig( 9PLCPL3 + j 9 P R 4 R 3 )  (3.27) 



2978 L Hlavat9 

where 9p ,  9pR, 9 p L  are K-invariant integration measures 

9 p  = 24 d4x d’9 d’7 (1 + $aq’) 

9 p R  = Z4 d4xR d’e”( 1 +sue”’) 

9 p L = 2 4 d 4 ~ L d 2 9 L .  

(3.28) 

(3.29) 

(3.30) 

After inserting the 4R and q5L into (3.27), and performing integration over anticommut- 
ing variables we obtain 

2 = a,ARa*AL + 4i(+*‘rwAhaa,$BR + R-L) + FRFL + aARFL 

+ M(ALFL - ;1+9~’ + R o  L) + $aMAR2 

+ JZg(A L2FL - A L+L2 + R - L) + a J/ZgAR3. (3.31) 

The fields FR, FL have no derivative terms in and may be therefore eliminated by 
virtue of their ‘motion equations’ 

FR +MAL + 4 g A L 2  + aAR = 0 

FL+MAR+J/ZgAR2=0. 

(3.32) 

(3.33) 

The final form of the Lagrangian that we obtain after the substitution 

A L  = 2-”2(A + iB), A R  = 2-”’(A - iB) (3.34) 

(I, = ( & A R )  di (3.35) 

where, however, A and B are still complex fields, is 

2 = i(a,A)2 + f(8,B)’ + $$y*a,$ - ;(M’ - aM)A2 - ;(M2 + aM)B’ - iM$+ 

-gMA(A2 + B 2 )  -:g2(A2 + B 2 ) 2  - g$(A - B y 5 ) +  + iMaAB. (3.36) 

This Lagrangian differs from the Wess-Zumino Lagrangian of the standard supersym- 
metry in terms proportional to a and by the fact that the fields A ,  B are not real. 

4. Conclusions 

The contraction procedure proves to be a convenient and powerful tool for the 
construction of Casimir operators, superfield representations, and invariant measures 
for Konopelchenko’s superalgebra, and may be applied without more serious 
difficulties. 

Konopelchenko’s superalgebra is related in different ways to other superalgebras 
used in physics (OSp( 1,4), supersymmetry GL algebra, superconformal algebra) 
but its own applications for the construction of physical models encounters serious 
problems. The source of the problem is the non-reality of the algebra. It prevents 
representing the odd generators by Hermitian operators and makes the K-symmetric 
Lagrangian non-real. Unfortunately we have not found any reasonable way to circum- 
vent these difficulties. 
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Appendix. Spin-tensor algebra 

Due to the fact that the odd generators Q A ,  RA are not connected by an involution 
there is no reason for considering them components of a Majorana bispinor but rather 
as two independent Weyl spinors. There is a standard procedure transforming tensors 
of the LorenQroup to Weyl spinors and spin-tensors by virtue of the matrices 

We let 
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